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Introduction, 1/3

Recall that modular arithmetic in Z12 is the set of equivalence
classes of remainders modulo 12 endowed with operations of
addition, subtraction, multiplication and, when possible, division.
For example, it is easy to see that

8+ 9 = 5,
5 · 7 = 1,
2 · 6 = 0, 3 · 4 = 0.

Consider

257 = 8.

But what about 257? Since 22 = 4, 23 = 8, 24 = 4, . . . , it is clear
that 2even = 4 and 2odd = 8. Is there any way that operations in Z12

can be “simplified”?
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Introduction, 2/3

12

12 = (2)2(3).
Spectral basis: {9,4}.

Index=1.
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Introduction, 3/3

Observe that, in Z12, we have

9+ 4 = 1,
9 · 4 = 0,

92 = 9,

42 = 4.

Furthermore, any x ∈ Z12 can be uniquely decomposed as

x = (x mod 4) · 9+ (x mod 3) · 4,

and

xr = (xr mod 4) · 9+ (xr mod 3) · 4,

for all positive integers r . If x is invertible, then r can be negative
as well.

4 / 31



The Spectral Basis Theorem

The elements 9 and 4 in Z12 comprise what is called the spectral
basis for Z12, or for convenience, the spectral basis of 12. It is a
fact that any integer n with at least two prime factors has a
spectral basis.

Theorem 1
Let n = pe1

1 p
e2
2 · · ·p

ek
k , k > 1, be a positive integer with at least

two prime factors. Then there exist elements s1, s2, . . . , sk of Zn
with the following properties:

s1 + s2 + · · · + sk = 1 (1)

s2
i = si,1 ≤ i ≤ k, (2)

sisj = 0, i ≠ j, (3)

x = (xr mod pe1
1 ) · s1 + · · · + (xr mod pekk ) · sk, (r ≥ 0). (4)

We call {s1, s2, . . . , sk} the spectral basis of Zn, or, for convenience,
the spectral basis of n.
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Proof of the Spectral Basis Theorem, 1/2

ñ Define the map ψ : Z→ M, M := Zpe11
⊕ Zpe22

⊕ · · · ⊕ Zpekk
, by

ψ(x) = (ψ1(x),ψ2(x), . . . ,ψk(x)), ψi(x) = x mod peii .

ñ Let us first find the image of ψ. Given y = (ȳ1, . . . , ȳk), there
exists x ∈ Z such that ψ(x) = y if and only if x ≡ ȳi mod peii for
all i = 1. . . . , k. Since the primary factors of n are pairwise
relatively prime, by the Chinese Remainder Theorem the system of
congruences has a solution, and so ψ is a ring epimorphism.
ñ Next, let us find the kernel of ψ. The kernel is all x ∈ Z such
that x ≡ 0 mod peii for all i, that is, if and only if x is divisible by
n = pe1

1 p
e2
2 · · ·p

ek
k . Consequently, the kernel of ψ is the ideal nZ

and the induced map ψ̄ : Z/nZ→ M is an isomorphism.
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Proof of the Spectral Basis Theorem, 2/2
The direct sum M := Zpe11

⊕ Zpe22
⊕ · · · ⊕ Z

p
ek
k

, has canonical projections

πi : M → Zp
ei
i

given by πi(n1, . . . , nk) = ni that satisfy

π1 + · · · +πk = Id,

π2
i = πi,

πiπj = 0, (i ≠ j).

What elements si of Zn correspond to the projections πi of M? Define
hi := n/peii . Since h1, . . . , hk are pairwise relatively prime, there exists integers
a1, . . . , ak in Zn such that

a1h1 + · · · + akhk = 1 in Zn.

It can be shown that
si := aihi = (h−1

i mod peii )hi

have the properties

s1 + · · · + sk = 1,

s2
i = si,

sisj = 0, (i ≠ j).
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Power-spectral numbers

Definition 2
A positive integer is power-spectral if its spectral basis consists of
primes or powers.

Examples 3

1. {3,4} is the spectral basis for 6.

2. {9,4} is the spectral basis for 12.

3. {7,8} is the spectral basis for 14.

4. {9,16} is the spectral basis for 24.

5. {152,26} is the spectral basis for 288 = (2)5(3)2.

6. {152,202,242} is the spectral basis for 600 = (2)3(3)(5)2.
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Mersenne I, 1/2

Theorem 4
The number 2pk has spectral basis {pk, pk + 1}.

Corollary 5
The number 2Mp has spectral basis {Mp,2p}.

Examples 6

1. {3,22} is the spectral basis for 2 · 3.

2. {7,23} is the spectral basis for 2 · 7.

3. {31,25} is the spectral basis for 2 · 31.

4. {127,27} is the spectral basis for 2 · 127.
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Mersenne I, 2/2

Theorem 7
Let Mp be a Mersenne prime with Mersenne exponent p. Then the
following numbers are power-spectral.

1. 2Mp has spectral basis {Mp,2p} or, equivalently,
{Mp,Mp + 1}.

2. 2pMp has spectral basis {M2
p,2p} or, equivalently,

{M2
p,Mp + 1}.

3. 2p+1Mp has spectral basis {M2
p,22p} or, equivalently,

{M2
p, (Mp + 1)2}

4. 22p+1M2
p has spectral basis {M2

p(Mp + 2)2, (M2
p − 1)2}.
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Fermat I, 1/1

It is easily shown that 2a + 1 can be prime if and only if a is a
power of 2. The number Fi = 22i + 1, i ≥ 0, is called a Fermat
number and a Fermat prime when it is prime. The only known
Fermat primes are F0 = 3, F1 = 5, F2 = 17, F3 = 257, F4 = 65537.

Theorem 8
If Fi = 2fi + 1 is a Fermat prime with exponent fi = 2i, i ≥ 0, then

1. 2fiFi has spectral basis {Fi,22fi}.
2. 2fi+1Fi has spectral basis {F2

i ,2
2fi}.

3. 22fi+1F2
i has spectral basis {(Fi − 2)2F2

i , (F
2
i − 1)2}.
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Cyclotomic primes, 1/3

Consider the number 20439 = 33 · 757. Let us verify that {757,39}
is the spectral basis for 20439. Clearly,
757+ 39 = 20440 ≡ 1 mod 20439 and 757 · 39 ≡ 0 mod 20439.
Further,

7572 − 757 = 757 · 756 = 757 · 22 · 33 · 7

= 22 · 7 · (33 · 757) ≡ 0 mod 20439.

(39)2 − 39 = 39(39 − 1) = 39 · 2 · 13 · 757

= 2 · 36 · 13 · (33 · 757) ≡ 0 mod 20439.

Are 757 and 39 related? The key is the decomposition of the
identity.
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Cyclotomic primes, 2/3

757+ 39 = 33 · 757+ 1

39 − 1 = 33 · 757− 757

39 − 1 = (33 − 1)(757)

757 = 39 − 1
33 − 1

Definition 9

The number Φr e(p) =
pr e − 1

pr e−1 − 1
, where p and r are primes and

e ≥ 1, when prime, is called a cyclotomic prime.

NOTE: Φr e(x) =
xr e − 1

xr e−1 − 1
can be prime when x is composite but

we are only interested in the case when x is prime.
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Cyclotomic primes, 3/3

Theorem 10
The number pre−1Φre (p) has spectral basis {Φre (p),pr

e}, where Φre (p) is a
cyclotomic prime.

Proof.
The decomposition of the identity follows from the requirement that Φre (p) is
prime. Let’s verify the projection property for q = Φre (p). Observe that

q2 − q = q(q − 1) = q
(
pre − 1

pre−1 − 1
− 1

)

= q
pre − pre−1

pre−1 − 1


= pre−1

q

pre−re−1 − 1

pre−1 − 1


≡ 0 mod pr

e−1
q.

Exercise: (pre )2 ≡ pre mod pre−1q.
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Power-spectral numbers 9p2sq2t, 1/3

Of natural interest are primes solutions to qt = 2ps ± 1 with
s, t ≥ 1. For example, Sophie-Germain primes are primes of the
form q = 2p + 1 and Cunningham primes are of the form
q = 2p − 1. It is open question whether or not there are infinitely
many primes of the form q = 2p ± 1.

Theorem 11 (Pell equation)
The equations x2 − 2y2 = ±1 have infinitely many integer
solutions. The only prime solution to x2 − 2y2 = 1 is
(x,y) = (3,2). The only prime solutions to x2 − 2y2 = −1 known
so far are

(7)2 = 2(5)2 − 1

(41)2 = 2(29)2 − 1

(63018038201)2 = 2(44560482149)2 − 1

(19175002942688032928599)2 = 2(13558774610046711780701)2 − 1
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Power-spectral numbers 9p2sq2t, 2/3

Theorem 12 (Ljjungren, 1942)
The only positive integer solutions to y2 = 2x4 − 1 are
(x,y) = (1,1) and (13,239), and the only prime solution is
(13,239).

Theorem 13 (Crescenzo, 1975)
The only solutions to qt = 2ps ± 1, s, t > 1, for primes p and q
occur only for (s, t) = (2,2) and (4,2).

Theorem 14 (Solutions to qt = 2ps ± 1)
The only prime solutions to qt = 2ps ± 1, s, t ≥ 1, occur for (s,1),
(1, t), (2,2), and (4,2).
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Power-spectral numbers 9p2sq2t, 3/3

Theorem 15
Suppose qt = 2ps ± 1 has prime solutions, p,q ≠ 3, for some
positive integers s and t. Then 9p2sq2t has spectral basis

{p2sq2t ,4(p2s − 1)2,16(p2 ± 1)p2s}.

Definition 16 (Ljjungren’s number)
Ljjungren’s number is defined to be the power-spectral number

32(13)8(239)4 = 23954159206871641449.

It is the unique power-spectral number of the form 9p8q4 where p
and q are prime.
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Mersenne II, 1/2

Theorem 17
Let Mp is a Mersenne prime with Mersenne exponent p > 2. Then

1. 22p−1 · 3 ·M2
p has power-spectral basis{
M2
p(Mp + 2)2,M2

p(Mp + 1)2, (M2
p − 1)2

}
of index 2.

2. 22p · 3 ·M2
p has power-spectral basis{
M2
p(Mp + 2)2,M2

p(Mp + 1)2, (M2
p − 1)2

}
.

3. 22p+1 · 3 ·M2
p has power-spectral basis{
M2
p

(
Mp + 2

)2
,4M2

p(Mp + 1)2, (M2
p − 1)2

}
.

The numbers 1 and 2 comprise an isospectral pair. See 22.
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Mersenne II, 1/2

Theorem 18
Let Mp be a Mersenne prime with Mersenne exponent p > 2. Then

1. 22p−3 · 32 ·M2
p has power-spectral basis{

M2
p(Mp + 2)2,

1
4
M2
p(Mp + 1)2, (M2

p − 1)2
}

of index 2.

2. 22p−2 · 32 ·M2
p has power-spectral basis{

M2
p(Mp + 2)2,

1
4
M2
p(Mp + 1)2, (M2

p − 1)2
}
.

3. 22p+1 · 32 ·M2
p has power-spectral basis{

M2
p(Mp + 2)2,16M2

p(Mp + 1)2, (M2
p − 1)2

}
.

Furthermore, the numbers 1 and 2 comprise an isospectral pair.
See 22.
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Fermat II, 1/2

Theorem 19
Let Fi be a Fermat prime with exponent fi = 2i. Then the following
numbers are power-spectral.

1. 22fi−1 · 3 · F2
i has power-spectral basis

{(Fi − 2)2F2
i , (Fi − 1)2 · F2

i , (F
2
i − 1)2}.

with index 2.

2. 22fi · 3 · F2
i has power-spectral basis

{(Fi − 2)2F2
i , (Fi − 1)2F2

i , (F
2
i − 1)2}.

3. 22fi+1 · 3 · F2
i has power-spectral basis

{(Fi − 2)2F2
i ,4(Fi − 1)2 · F2

i , (F
2
i − 1)2}.

Furthermore, 1 and 2 form an isospectral pair. See 22.
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Fermat II, 2/2

Theorem 20
Let Fi be a Fermat prime with Fermat exponent fi = 2i. Then

1. 23 · 9 · 52 has power-spectral basis

{
3252,2353,2632

}
.

2. 22fi−3 · 9 · F2
i has power-spectral basis

{
(Fi − 2)2F2

i ,
1
4
(Fi − 1)2F2

i , (F
2
i − 1)2

}
.

with index 2.

3. 22fi−2 · 9 · F2
i has power-spectral basis

{
(Fi − 2)2F2

i ,
1
4
(Fi − 1)2F2

i , (F
2
i − 1)2

}
.

4. 22fi+1 · 9 · F2
i , has power-spectral basis

{(
Fi − 2

)2 F2
i ,16(Fi − 1)2F2

i , (F
2
i − 1)2

}
.

Furthermore, the numbers of Theorem 2 and Theorem 3 form an isospectral pair for i = 2,3,4. See 22.
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Isospectral chains, 1/3
The pair {84,42} both have the same spectral basis, namely,
{21,28,36}. Two numbers will be called isospectral if they have the
same spectral basis. Let’s look at the decomposition of the identity.

21+ 28+ 36 = 2 · 42+ 1 ≡ 1 mod 42,
21+ 28+ 36 = 1 · 84+ 1 ≡ 1 mod 84.

We say that 42 has index 2 and that 84 has index 1 and that {84,42}
comprise an isospectral pair.

Definition 21 (Isospectral pair)
An isospectral pair is a pair of integers {n1, n2} such that n1 = 2n2,
both have the same spectral basis, and of index 1 and 2, respectively.

Maximal isopectral chains of length 2.
n1 n1 factored
84 (2)2(3)(7) {21,28,36}

228 (2)2(3)(19) {57,76,96}
280 (2)3(5)(7) {105,56,120}
340 (2)2(5)(17) {85,136,120}
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Isospectral chains, 2/3

Definition 22
An isospectral chain of length k is defined to be a finite sequence
of pairwise isospectral numbers n1, . . . , nk, such that ni has
index i and

n1 + 1 = 2n2 + 1 = · · · = knk + 1,

or, equivalently,
n1 = 2n2 = · · · = knk.

It will be assumed that the chain length k is maximal, that is,
n1/(k+ 1) is not isospectral with n1.
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Isospectral chains, 3/3

Maximal isopectral chains of length 3.
n1 n1 factored

10980 (2)2(3)2(5)(61) {2745,2440,2196,3600}
35280 (2)4(3)2(5)(7)2 {11025,7840,7056,9360}
36180 (2)2(3)3(5)(67) {9045,10720,7236,9180}
43380 (2)2(3)2(5)(241) {10845,9640,8676,14220}

Maximal isopectral chains of length 4.
n1 n1 factored

488880 (2)4(3)2(5)(7)(97) {91665,108640,97776,69840,120960}
1525680 (2)4(3)2(5)(13)(163) {286065,339040,305136,352080,243360}
2870280 (2)3(3)2(5)(7)(17)(67) {358785,637840,574056,410040,675360,214200}
4930272 (2)5(3)2(17)(19)(53) {1078497,1095616,1160064,1037952,558144}
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Isotropic numbers, 1/4

ñ Recall that 42 = 2 · 3 · 7 is the first number of index 2 with
spectral basis {21,28,36}. Since {1 · 21,2 · 14,6 · 6}, we call
{1,2,6} the spectral coefficients of 42.
ñ Consider the product of twin primes 3 · 5 = 15, with spectral
basis {10,6}. Observe that 10 = 2 · 5 and 6 = 3 · 2 so that the
spectral coefficients of 15 are {2,2}.
Definition 23 (Isotropic number)
A number is isotropic if all its spectral coefficients are equal.

Theorem 24
The product of twin primes is isotropic.

Proof.
Let p and q = p + 2 be prime. Then aq + ap = pq + 1 so that
a = (pq + 1)/(p + q) = (p2 + 2p + 1)/(2p + 2) =
(p + 1)2/(2(p + 1)) = (p + 1)/2. It can shown that {aq,ap} is in
fact the spectral basis for pq.
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Isotropic numbers, 2/4

Theorem 25
If p and q are primes or prime powers, and if

a = (pq + 1)/(p + q)

is an integer, then pq is isotropic with spectral coefficient a.

Powerful isotropic numbers with two factors
1728 (2)6(3)3 {513,1216}

675 (3)3(5)2 {325,351}
7092899 (11)3(73)2 {5675385,1417515}

7138196909 (29)3(541)2 {6589127353,549069557}
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Isotropic numbers, 3/4

Theorem 26 (Isotropic number theorem)
Let n = P1 · · ·Pk be a product of distinct primes or prime powers.
Let P̄i = n/Pi and suppose that

a = (n+ 1)/(P̄1 + · · · P̄k)

is an integer. Then n is isotropic with spectral coefficient a and
spectral basis {aP̄1, . . . , aP̄k}.

Isotropic numbers with more than two factors
n a

30 (2)(3)(5) 1
429 (3)(11)(13) 2
858 (2)(3)(11)(13) 1
861 (3)(7)(41) 2

1722 (2)(3)(7)(41) 1
2300 (2)2(5)2(23) 3
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Isotropic numbers, 4/4

Isotropic numbers of immediate interest are those with a = 1, called
cancelable, since the spectral basis is found by deletion of prime factors.

Isotropic numbers a = 1
30 (2)(3)(5) 1

858 (2)(3)(11)(13) 1
1722 (2)(3)(7)(41) 1

66198 (2)(3)(11)(17)(59) 1

A search on the Online Encyclopedia of Integer Sequences,
https://oeis.org/, reveals the following:

A007850 Giuga numbers: composite numbers n such that p divides n/p− 1
for every prime divisor p of n.

30,858,1722,66198,2214408306,24423128562, . . .

It is easy to show that ever Giuga number is cancelative.

Conjecture 1
A number is cancelative if and only if it is Giuga.
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Fibonacci 1/2

Recall that the Fibonacci sequence is defined recursively by F0 = 0,
F1 = 1, and Fn = Fn−1 + Fn−2, n ≥ 2. Since Fm|Fn whenever m|n,
Fn can be prime only when n is prime.

Lemma 27
Let p be a prime such that Fp is prime. Then

Fp ≡
(

5
p

)
(mod p),

where (5|p) is the Legendre symbol defined by(
5
p

)
=
{

1 if p ≡ 1,4 (mod 5);
−1 if p ≡ 2,3 (mod 5).
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Fibonacci 1/2

Theorem 28
Let p ≠ 5 be a prime such that Fp is prime. Then pFp has spectral
basis

{Fp, pFp − Fp + 1} whenever p ≡ 1,4 (mod 5),
{(p − 1)Fp, Fp + 1} whenever p ≡ 2,3 (mod 5).
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Lucas 1/1

Recall that the Lucas sequence is defined recursively by L0 = 2,
L1 = 1, and Ln = Ln−1 + Ln−2, n ≥ 2. Since Lm|Ln whenever m|n
and n/m is odd, Ln can be prime only when n is prime or a power
of 2.

Lemma 29

1. Let p be a prime such that Lp is prime. Then Lp ≡ 1 mod p.

2. If L2m is prime, then L2m ≡ −1 mod p.

Theorem 30

1. If p is a prime such that Lp is prime, then pLp has spectral
basis {Lp, pLp − Lp + 1}.

2. If L2m is prime, then 2mL2m has spectral basis
{(2m − 1)L2m , L2m + 1}.

NOTE: L2m is known to be prime only for m = 1,2,3,4, just like
the Fermat primes. �
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