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Introduction, 1/3

Recall that modular arithmetic in Z;» is the set of equivalence
classes of remainders modulo 12 endowed with operations of
addition, subtraction, multiplication and, when possible, division.
For example, it is easy to see that

8§+9=5,
5-7=1,
2-6=0, 3-4=0.

Consider
2°7 = 8.
But what about 2°7? Since 22 =4, 23 =8,24 =4, ..., itis clear

that 2¢¥e? = 4 and 2°dd = 8. |s there any way that operations in Z»
can be “simplified?



Introduction, 2/3

12 = (2)2(3).
Spectral basis: {9,4}.
Index=1.
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Introduction, 3/3

Observe that, in Z1», we have

9+4=1,
9.-4=0,
92 =09,
42 = 4,

Furthermore, any x € Z;» can be uniquely decomposed as
x =(xmod4) -9+ (x mod 3) -4,

and
x" = (x" mod 4) -9+ (x¥ mod 3) -4,

for all positive integers 7. If x is invertible, then r can be negative
as well.



The Spectral Basis Theorem

The elements 9 and 4 in Z;» comprise what is called the spectral
basis for Z1», or for convenience, the spectral basis of 12. It is a
fact that any integer n with at least two prime factors has a
spectral basis.

Theorem 1
Letn = p{'p3? - - - pi, k > 1, be a positive integer with at least
two prime factors. Then there exist elements s1,52,...,5¢ of Z,,

with the following properties:

Sp+S2+ - tse=1 M
s?=s;,1<i<k, ()
$isj = 0,1+ j, 3)

x=(x" mod pi')-s1+---+(x" mod pp*) - sk, (r=0). (4)

We call {s1,50,...,Sk} the spectral basis of Z,,, or, for convenience,
the spectral basis of n.



Proof of the Spectral Basis Theorem, 1/2

» Definethe map ¢ :Z - M, M := prl @Zp;z ®--- @Zpik, by

W(x) = (P1(x), P2(x),...,Pk(x)), Wilx)=x mod p;.

» Let us first find the image of @. Given y = (¥1,..., V), there
exists x € Z such that ¢(x) = y if and only if x = y; mod pf" for
alli=1....,k. Since the primary factors of n are pairwise
relatively prime, by the Chinese Remainder Theorem the system of
congruences has a solution, and so  is a ring epimorphism.

» Next, let us find the kernel of @. The kernel is all x € Z such
that x = 0 mod pf" for all i, that is, if and only if x is divisible by
n=p{'ps - - pr. Consequently, the kernel of g is the ideal nZ
and the induced map ¢ : Z/nZ — M is an isomorphism.



Proof of the Spectral Basis Theorem, 2/2
The direct sum M := prl ® Zp;z -0 Zl’ik' has canonical projections

M - Zp?i given by mm;(ny,...,ng) = n; that satisfy

™ + -+ 1T =1d,
2
W, = T,
Tt = 0, (i J)
What elements s; of Z;,; correspond to the projections 7r; of M? Define

hi:= n/pfi. Since hy,..., hy are pairwise relatively prime, there exists integers
ai,...,ag in Zy such that

arthy +---+aghgy =1 inZy.

It can be shown that .
sit=aihi = (h;! mod p;")h;

have the properties
S14+ 45 =1,
=5,
sisj =0, = j).
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Power-spectral numbers

Definition 2
A positive integer is power-spectral if its spectral basis consists of
primes or powers.

Examples 3

1. {3,4} is the spectral basis for 6.

2. {9,4} is the spectral basis for 12.

3. {7,8} is the spectral basis for 14.

4. {9,16} is the spectral basis for 24.

5. {152,265} is the spectral basis for 288 = (2)°(3)2.

6. {152,202,242} is the spectral basis for 600 = (2)3(3)(5)2.



Mersenne |, 1/2

Theorem 4
The number 2p* has spectral basis {p*, p* + 1}.

Corollary 5
The number 2M,, has spectral basis {M,,27}.

Examples 6

1. {3,22} is the spectral basis for 2 - 3.

2. {7,23} is the spectral basis for 2 - 7.

3. {31,2°} is the spectral basis for 2 - 31.
4. {127,27} is the spectral basis for 2 - 127.
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Mersenne |, 2/2

Theorem 7
Let M, be a Mersenne prime with Mersenne exponent p. Then the
following numbers are power-spectral.

1. 2M, has spectral basis {Mp,27} or, equivalently,
(M, M, +1}.

2. 2PMy, has spectral basis {M2,2P} or, equivalently,
{M2,M, +1}.

3. 2P*IM,, has spectral basis {M2,2%F} or, equivalently,
{M,lz,, (M +1)%}

4. 2°P*IMZ has spectral basis {M3 (M, + 2)%, (M5 — 1)?}.
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Fermat |, 1/1

It is easily shown that 24 + 1 can be prime if and only if a is a
power of 2. The number F; = 22" + 1, i = 0, is called a Fermat
number and a Fermat prime when it is prime. The only known
Fermat primes are Fo = 3,F; = 5,F» =17,F3 = 257,F4 = 65537.
Theorem 8 ,
IfF; = 2Ji + 1 is a Fermat prime with exponent f; = 21, i > 0, then
1. 2/iF; has spectral basis {F;, 22fi}.
2. 2/i*1F; has spectral basis {F?,2%/i}.

3. 22/i*1F2 has spectral basis {(F; — 2)°F?, (F? — 1)?}.
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Cyclotomic primes, 1/3

Consider the number 20439 = 33 . 757. Let us verify that {757,3°}

is the spectral basis for 20439. Clearly,

757 + 39 = 20440 = 1 mod 20439 and 757 - 3% = 0 mod 20439.

Further,

7572 =757 =757 -756 =757 -2%2.33.7
=22.7.(32-757) =0 mod 20439.
(392-39=393-1)=3%.2.13-757

=2-.3%.13.(3%3.757) =0 mod 204309.

Are 757 and 39 related? The key is the decomposition of the
identity.



Cyclotomic primes, 2/3

757 +39=33.757+1
39-1=33.757-757
39 -1=(33-1)(757)

39 -1
757 = —/——
> 33 -1
Definition 9
re _
The number ®,.(p) = %, where p and v are primes and

e > 1, when prime, is called a cyclotomic prime.
x -1
NOTE: ®,:(x) = 1 can be prime when x is composite but

we are only interested in the case when x is prime.
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Cyclotomic primes, 3/3

Theorem 10

The number pre ®ye(p) has spectral basis {®,e(p), pre }, where ®ye(p) isa
cyclotomic prime.

Proof.

The decomposition of the identity follows from the requirement that &, (p) is
prime. Let’s verify the projection property for g = ®,¢(p). Observe that

e
2y pm -1
a“--a=4d(q 1)_q(pr“_1 1)

- p.reipye—l
=4 pye—l_l

e prefye—l -1
=p a pye—l -1
=0 modp”™ 'q. O

e

Exercise: (p”*)2 = p*° mod p™ ' q.
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Power-spectral numbers 9p%$g°t, 1/3

Of natural interest are primes solutions to gt = 2p* + 1 with

s,t = 1. For example, Sophie-Germain primes are primes of the
form g = 2p + 1 and Cunningham primes are of the form

q = 2p — 1. It is open question whether or not there are infinitely
many primes of the form g = 2p = 1.

Theorem 11 (Pell equation)

The equations x* — 2y? = +1 have infinitely many integer
solutions. The only prime solution to x? —2y? =1 is

(x,y) = (3,2). The only prime solutions to x> — 2y% = —1 known
so far are

(7)2=2(572-1
(41)2 =2(29)> -1
(63018038201)° = 2(44560482149)% — 1
(19175002942688032928599)% = 2(13558774610046711780701)% — 1
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Power-spectral numbers 9p%$g°t, 2/3

Theorem 12 (Ljjungren, 1942)

The only positive integer solutions to y? = 2x* — 1 are
(x,¥v) =(1,1) and (13,239), and the only prime solution is
(13,239).

Theorem 13 (Crescenzo, 1975)
The only solutions to qt = 2ps =1, s,t > 1, for primes p and q
occur only for (s,t) = (2,2) and (4,2).

Theorem 14 (Solutions to gt = 2p* = 1)

The only prime solutions to qt = 2p° + 1, s,t = 1, occur for (s,1),
(1,1), (2,2), and (4, 2).
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Power-spectral numbers 9p%$g°t, 3/3

Theorem 15
Suppose qt = 2p* + 1 has prime solutions, p,q + 3, for some
positive integers s and t. Then 9p?*q®t has spectral basis

p*a*,4(p* - 1)%,16(p* + D p*}.
Definition 16 (Ljjungren’s number)
Ljjungren’s number is defined to be the power-spectral number
32(13)8(239)* = 23954159206871641449.

It is the unique power-spectral number of the form 9p8q* where p
and q are prime.
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Mersenne ll, 1/2

Theorem 17
Let M, is a Mersenne prime with Mersenne exponent p > 2. Then

1. 22P=1. 3. M} has power-spectral basis
IM2(M, +2)2, ME(M,, + 1)2, (M2 - 1)?]

of index 2.

2. 2%P .3 - My, has power-spectral basis
IM2(M,, +2)2, M2(M,, + 1)2, (M - 1)2}.
3. 2%+l . 3. M7 has power-spectral basis
2
{Mf, (Mp +2)",4M2 (M, +1)2, (M2 - 1)2}.
The numbers 1 and 2 comprise an isospectral pair. See 22.
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Mersenne ll, 1/2

Theorem 18
Let M, be a Mersenne prime with Mersenne exponent p > 2. Then

1. 22P=3.32.. M2 has power-spectral basis
1
{ME,(M,, +2)2, ZME,(M,, +1)%, (M5 - 1)2}

of index 2.

2. 2%p=2.3%. M; has power-spectral basis
1
{M;(Mp +2)%, My (Mp + 1)%, (M — 1)2}.
3. 22P*1.32. M2 has power-spectral basis

{M2(M,, +2)2,16M% (M, + 1)2, (M3 - 1)2}.

Furthermore, the numbers 1 and 2 comprise an isospectral pair.
See 22.
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Fermat Il, 1/2

Theorem 19 '
Let F; be a Fermat prime with exponent f; = 2'. Then the following
numbers are power-spectral.

1. 22fi=1. 3 . F? has power-spectral basis
{(Fi = 2)°F7, (Fi — 1)* - F}, (F} = 1)°}.

with index 2.
2. 22fi . 3. F? has power-spectral basis

{(Fi = 2)°F7, (Fi — 1)*F}, (Ff — 1)?}.
3. 22fitl . 3. Fl2 has power-spectral basis
{(F; = 2)°F},4(F; = 1) - Ff, (Ff = 1)%}.

Furthermore, 1 and 2 form an isospectral pair. See 22.
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Fermat Il, 2/2

Theorem 20

Let F; be a Fermat prime with Fermat exponent f; = 2L, Then

1. 23.9.52 has power-spectral basis
{3%52,2353, 2032}
2. 22fi73.9. Fl-2 has power-spectral basis

R = 2022, 3 (R = 102F2, R - 102

with index 2.
3. 22fi=2.9. FiZ has power-spectral basis

1
{(Fi - 2)%Ff, 7 (Fy = D*F], (Ff ~ 1)2}.
4. 22fi+1 . 9. FL-Z, has power-spectral basis
{(F — 2)2 F2,16(F; - 1)2F?, (F? - 1)?].

Furthermore, the numbers of Theorem 2 and Theorem 3 form an isospectral pair for i = 2,3,4. See 22.
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Isospectral chains, 1/3

The pair {84,42} both have the same spectral basis, namely,
{21,28,36}. Two numbers will be called isospectral if they have the
same spectral basis. Let’s look at the decomposition of the identity.

21+28+36=2-42+1=1 mod 42,
21+28+36=1-84+1=1 mod 84.

We say that 42 has index 2 and that 84 has index 1 and that {84,42}
comprise an isospectral pair.

Definition 21 (Isospectral pair)

An isospectral pair is a pair of integers {n;,n.} such that n; = 2ny,
both have the same spectral basis, and of index 1 and 2, respectively.

Maximal isopectral chains of length 2.
ny n; factored
84  (2)°(3)(7) {21,28,36}
228  (2)%(3)(19) {57,76,96}
280 (2)3(5)(7) {105,56,120}
340 (2)%(5)(17) {85,136,120}
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Isospectral chains, 2/3

Definition 22
An isospectral chain of length k is defined to be a finite sequence
of pairwise isospectral numbers ny, ..., ng, such that n; has
index i and

nm+1=2n+1=---=kng+1,

or, equivalently,
ny =2np = - - - =kng.

It will be assumed that the chain length k is maximal, that is,
ny/(k + 1) is not isospectral with n;.
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Isospectral chains, 3/3

Maximal isopectral chains of length 3.
n n, factored
10980 (2)2(3)2(5)(61) {2745,2440,2196,3600}
35280 (2)4(3)2(5)(7)? {11025, 7840, 7056,9360}
36180 (2)2(3)3(5)(67) {9045,10720, 7236,9180}
43380  (2)2(3)2(5)(241)  {10845,9640,8676,14220}

Maximal isopectral chains of length 4.

n n, factored
488880 (2)4('3)2(5)(7)(97) {91665, 108640,97776,69840, 120960}
1525680 (2)4(3)2(5)(13)(163) {286065,339040,305136, 352080, 243360}

2870280 (2)3(3)2(5)(7)(17)(67) {358785,637840,574056,410040, 675360, 214200}
4930272 (2)°(3)%(17)(19)(53) {1078497,1095616, 1160064, 1037952, 558144}
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Isotropic numbers, 1/4

» Recall that 42 = 2 - 3 - 7 is the first number of index 2 with
spectral basis {21, 28,36}. Since {1-21,2-14,6 -6}, we call
{1,2,6} the spectral coefficients of 42.

» Consider the product of twin primes 3 - 5 = 15, with spectral
basis {10,6}. Observe that 10 =2 -5 and 6 = 3 - 2 so that the
spectral coefficients of 15 are {2, 2}.

Definition 23 (Isotropic number)
A number is isotropic if all its spectral coefficients are equal.

Theorem 24
The product of twin primes is isotropic.

Proof.

Let p and g = p + 2 be prime. Then aq + ap = pq + 1 so that
a=(pa+1)/(p+q)=p>+2p+1)/(2p +2) =

(p+1)%/2(p +1)) = (p+1)/2. It can shown that {aq,ap} is in
fact the spectral basis for pg. O
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Isotropic numbers, 2/4

Theorem 25
If p and q are primes or prime powers, and if

a=(pa+1/(p+aq)
is an integer, then pq is isotropic with spectral coefficient a.

Powerful isotropic numbers with two factors

1728 (2)6(3)3 {513,1216}
675 (3)3(5)2 {325,351}
7092899  (11)3(73)2 {5675385,1417515}

7138196909 (29)3(541)> {6589127353,549069557}

26/3



Isotropic numbers, 3/4

Theorem 26 (Isotropic number theorem)

Letn = Py - - - Py be a product of distinct primes or prime powers.

Let P; = n/P; and suppose that
a=m+1)/(Py+---P)

is an integer. Then n is isotropic with spectral coefficient a and
spectral basis {aP,...,aPy}.

Isotropic numbers with more than two factors

n a

30 (2)(3)(5) 1
429 (3)(11)(13) 2
858 (2)(3)(11)(13) 1
861 (3)(7)(41) 2
1722 (2)(3)(7)(41) 1
2300 (2)2(5)%(23) 3
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Isotropic numbers, 4/4

Isotropic numbers of immediate interest are those with a = 1, called
cancelable, since the spectral basis is found by deletion of prime factors.

Isotropic numbers a =1

30 (2)(3)(5) 1
858 (2)(3)(11)(13) 1
1722 (2)(3)(7)(41) 1
66198 (2)(3)(11)(17)(59) 1

A search on the Online Encyclopedia of Integer Sequences,
https://oeis.org/, reveals the following:

A007850 Giuga numbers: composite numbers n such that p divides n/p — 1
for every prime divisor p of n.

30,858,1722,66198,2214408306, 24423128562, ...

It is easy to show that ever Giuga number is cancelative.

Conjecture 1
A number is cancelative if and only if it is Giuga.
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Fibonacci 1/2

Recall that the Fibonacci sequence is defined recursively by Fyp = 0,
Fi=1,and F,, = F,_1 + F,_», n = 2. Since F,;|F,, whenever m|n,
Fy can be prime only when n is prime.

Lemma 27
Let p be a prime such that F, is prime. Then

5
where (5|p) is the Legendre symbol defined by

5)_ 1 ifp=1,4 (mod5);
p) |-1 ifp=2,3 (modH5).
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Fibonacci 1/2

Theorem 28
Let p + 5 be a prime such that F, is prime. Then pF, has spectral
basis

{Fp,pFp —Fp +1} whenever p = 1,4 (mod 5),
{(p —1)Fp,Fp +1} wheneverp =2,3 (mod 5).
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Lucas 1/1

Recall that the Lucas sequence is defined recursively by Lo = 2,
Ly=1,and L, =Ly_1 +Ly_o, n > 2. Since L,,|L,; whenever m|n
and n/m is odd, L, can be prime only when = is prime or a power
of 2.
Lemma 29
1. Let p be a prime such that L, is prime. Then L, =1 mod p.
2. If Lym is prime, then Lym = —1 mod p.

Theorem 30

1. If p is a prime such that L, is prime, then pL, has spectral
basis {Ly,pLy — Ly + 1}.

2. If Lom is prime, then 2™ Lym has spectral basis
{(2m - ].)Lzm,Lzm + 1}

NOTE: Lom is known to be prime only for m = 1,2, 3,4, just like
the Fermat primes. [
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