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Abstract

The Div and Curl operators are derivative-like, but are only aspects of the derivative of a map from 3-space to 3-space. The derivative of such a given map is a linear map from 3-space to 3-space. By employing the Frechet difference quotient at the outset, we can construct that derivative without use of the methods of advanced analysis. The process, results, and properties parallel those of the one-dimensional case.

Introduction

In the usual calculus sequence we begin by defining the derivative of a real-valued function of a real variable via the limit of a difference quotient. Next come the techniques for finding the derivative of familiar functions without resort to the defining relation. As we work our way to the study of functions from n-space to m-space where  and , we encounter “partial derivatives,” “gradient,” “divergence,” and “curl.” But “derivative” standing alone seems to disappear, and it reappears, if at all, in analysis courses above, or to the side of, Advanced Calculus. That traditional approach has the advantage of quickly getting to methods that have applications in engineering and scientific disciplines, the source of most students who study the calculus sequence. But these derivative-like concepts, especially Divergence and Curl, seem to appear out of a vacuum, not as a continuation of the development of the derivative concept. An alternative approach is available.

There exists a relatively smooth route from the definition of the derivative for the one-variable case to the definition of the derivative for the case in which both domain and range can have any (not necessarily equal) dimensions. The approach involves constructing the limit for the Frechet difference quotient, essentially a directional derivative. If this limit satisfies certain smoothness conditions, then a derivative emerges, and it is a linear map; the linearity is demonstrable directly from the defining relation.

When both the domain and range of a function are real 3-space, then the derivative is a linear map from 3-space to 3-space, and the Divergence and Curl are aspects of that derivative, but neither one nor both constitute the derivative. Further properties of the derivative emerge, without the use of coordinates, along lines that parallel those used to derive comparable properties of the derivative for the one-variable case. We do return to coordinates when performing calculations.

This approach to the multi-dimensional derivative illustrates the beauty and utility of generalization without having to resort to the more advanced methods of higher analysis.

What follows is expository in nature, hence the level of justification for the assertions given varies from a minimum of none to, in a few cases, a maximum of relatively acceptable plausibility arguments. I assert that solid proofs of the claims displayed appear in the references cited in the annotated bibliography. 

The usual calculus course proceeds through the material somewhat as follows: (1) scalar-valued functions of a scalar, (2) vector-valued functions of a scalar, (3) scalar-valued functions of a vector, and (4) vector-valued functions of a vector. I will follow that sequence to the main goal of (4), except that I will skip (2). 

I begin by defining the derivative of a real-valued function of a real variable in a way that may seem strange and unnecessarily convoluted. However, the definition I use sets the stage for the definitions that apply to the other two cases. This first section, and only this section, is new; at least I have not seen it in print. All else is, well, derivative.

Scalar-valued Functions of a Scalar

Situation:  represents the real numbers. .

Goal: Define the derivative of  at , .

For  consider the following limit:

.                                                                                   (1)
     
If this limit exists, then  is called “the derivative of  at  with respect to .”

Definition:  is “differentiable” in  if exists for each  and each . If further, for each   is continuous in , then  is said to be “continuously differentiable in .”

Claim:  is linear at variable  

Pick and fix  in  and consider . Show first that  = . Well,



	


                         


                           .

Therefore,                                                                                                 (2)



Now let  and  denote two non-zero elements of  and consider .



for some 






               

              

              .                                                                                          (3) 

Justifications for the numbered steps:

                            

                in (2)

               in (2)

                 

So,  is linear in the second variable. 

Definition: The derivative of  at , denoted by , is the linear map from   defined by .  

Examples:

1.  is a constant function, , where  is a constant. Then , i.e. , sends all  to zero for every    

Argument: .

2.  is a linear map, i.e., , where  is an arbitrary but fixed number.


		Then  is a constant map, i.e., 

		 for every .

		Argument: .

3.  implies that , i.e.,

  all 

Argument: 

                     

                     

Now, divide by  and pass to the limit to see that

           .

Best affine approximation to 

Pick and fix . Then the mean value theorem says that

.                                                                                  (4)   

You will see direct parallels to (4) as we work our way up to functions from .   

Scalar-valued Functions of a Vector

Situation:  

Goal: Define the derivative of  at , . For , consider the following limit that defines function .
          


If this limit exists, then  is called “the derivative of  at  with respect to ”.

Definition: The function  is said to be differentiable in  if  exists for each  in . It is said to be continuously differentiable if, for each ,  exists for each  and is continuous in .

Claim:  is linear in the variable . First, show that  for .

Pick and fix  in . If , the difference quotient is . If , then
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Now, consider . We must show that ,
where

.

There exists a version of the mean value theorem that we will need:

If  exists for , then there exists  such that



Now consider 













Justifications:

  Subtract and add 

  Clear

  Apply Eqn. (6) with  and  to obtain the first term. 
      Apply definition of  to yield the second term.

  Apply Eqn. (5) with .

  Execute the limit operation.

Definition: If  is continuously differentiable, then the derivative of  at  is the linear map

 ,

defined by



The Gradient

Thus far I have not mentioned the gradient; classical textbooks introduce and discuss the gradient early in developing the theory of functions from . I turn now to connecting our derivative to the gradient.

Much of what follows could be developed without reference to a specific basis or a specific scalar product, but henceforth I will employ the usual dot product and the standard basis. I use the following notation for base vectors.

, , .

Let 

Then











Justifications:

 Clear

   is linear in the second variable.

   is linear in the second variable.

  Definition of 

  Components of  are equal to those of  except for the th, which is .  
      Therefore, the difference quotient used to define  is identical to that used to define the partial derivative.

So,


Now, there exists a theorem from linear algebra which says that if  is linear, then there exists a unique vector, , say, in  such that



Invoke the fact that  is linear in the second variable, compare Eqns. (9) and (10), and you see that the unique vector  is  in the case at hand. That is,



So, knowing the gradient, , is equivalent to knowing the derivative  but  is not the derivative.  is a member of  is a linear map from  to.



Best affine approximation to 

Given , consider the best affine approximation to  in the neighborhood of a fixed point . We see from Eqn. (11) that the best such approximation is



or, in terms of the gradient, 



Equation (12’) represents the classical version.

Vector-valued Functions of a Vector

Situation: 

Goal: Define the derivative of  at , , and discuss some of its properties. In particular, study the relationship of  to the Divergence and Curl.

For , consider the following limit that defines :



if the limit exists.  

Definition: Function  is said to be differentiable if  exists for every  and .  is continuously differentiable if it is differentiable and  is continuous in .

In what follows I assume that all functions possess the smoothness required for whatever operation is indicated. The development is formal and sketchy. The references  cited in the annotated bibliography contain extensive, careful, and broader-based arguments that lead to results much more general than those displayed here.

Examples:

1.  is a constant function.

		 for every .  is a fixed vector.
		
		Then .

		So, .

2.  is a linear map.

		, where  is linear.

		Then .

					.

Now, divide by  and pass to the limit to see that

 for all .

Let  represent the usual basis in . Then

 ,

where the  represent the component functions. Let  represent the derivative with respect to  of the component functions. In the previous section we sketched an argument that showed that the  are linear in the variable . It can be shown that  inherits linearity in  from the . So,



is linear in the variable .

Definition: The derivative  of  at  is the linear transformation



defined by



Examples (restatement in terms of rather than ):

1. The derivative of a constant function is the zero vector. So  transforms all of  into the zero vector.
2. The derivative of a linear function is a constant.

 linear, implies that

		 for every .

Now we can get back to more familiar, classical ground.  is a linear map.  Given a basis, a linear map can be represented by a matrix relative to that basis. So, as above, let  represent the standard basis. Then

 ,

where the scalar-valued  are the component functions of .

Then



I have invoked Eqn. (9) of the previous section and the linearity of  to arrive at Eqn. (15).

Observe from Eqn. (15) that, relative to the standard basis,  is represented by 

 
where here and below I use   to indicate the matrix of  .

Best affine approximation to F

As in the previous  and cases, we have a best approximation via Taylor’s formula:



We now have available the definition of the derivative of a function from . That derivative is a linear map from. To define Div and Curl and to show their connection to the derivative, I need some results from Linear Algebra. They appear in Appendix A as assertions without proof. In Appendix A I restrict attention to results about real -space where , which suffices for present purposes. More general versions of most exist.





Divergence and Curl of a Vector Field

Given  as above, then  is a linear map from . Linear maps may be broken into the sum of their symmetric and skew-symmetric parts.

Let  represent the adjoint of . Then


					and

 skew-symmetric part.                            	                             (19)

Observe that  sum of the two parts.

Formula (16) displays the matrix representation of , and I wish to display some additional matrix representations. So, to simplify typography, until further notice let



Then Formula (16) becomes


and the matrix of  is



The matrix representations  and (21) combined with Eqns. (18) and (19) and followed by some matrix algebra lead to the matrix representations of  and 

They are








Definition: The Divergence of  is a map , defined by



The Trace of  is equal to the sum of the roots of the characteristic polynomial of , a property of the linear map that is invariant to matrix representation. The trace of any linear map from  is equal to the sum of the diagonal elements of any matrix representation. Hence, the familiar version of the Divergence:





Observe also that 

Definition: The Curl of  at  is defined by



How do we know that a vector that makes the right side of Eqn. (24) equal to the left-hand side exists? Well,  is a skew-symmetric transformation and item A5 of the Appendix asserts that such a vector exists for such maps; we name it . Also, according to A5, if the matrix of a skew-symmetric map looks like



then the vector at issue ( here) is

  

Compare Eqns. (23), (25), and (26) and you see that



or, in the usual notation,



Divergence and Curl of a Steady Flow (an application)

Consider a vector field  and the flow induced by the differential equation



Note that time does not appear on the right hand side of Eqn. (28), hence “steady flow.”

Pick and fix . Expand  around  via Taylor’s formula; substitute the result into Eqn. (28) to yield



Split  into the sum of its symmetric and skew-symmetric components



and substitute into Eqn. (29) to obtain



Now, consider the motion of the points within a small sphere centered at  at time zero, say. How has that spherical test ball changed in a small time ? The terms on the right-hand side yield an approximate answer.

Consider first the motion induced by





Equation (32) says that the test ball rotates about an axis through  parallel to  with angular velocity  . That motion is volume-preserving.

Consider next the motion described by



 is a symmetric map centered at  . Let  represent its eigenvalues and  denote the corresponding orthonormal set of eigenvectors. Then the corresponding eigenvalues of the flow described by Eqn. 33 are . That flow distorts the spherical ball slightly into an ellipsoid. The volume of the ball changes by a factor that is the determinant of the transformation. That determinant is  and its time rate of change when  is .


Finally, consider the motion induced by



Equation (34) says that the ellipsoid experiences a small translation with velocity vector .

The General  Case and the Chain Rule

The chain rule is so important in differential calculus that its multidimensional version deserves a brief discussion. Before doing so, I point out that our restriction to the  case above was not necessary; I invoked the restriction because of the emphasis on the undergraduate calculus sequence.

Let  and  represent natural numbers and consider . If  is differentiable at , then its derivative can be defined via the Frechet difference quotient just as we did in the earlier cases. The process is identical to the one used for the  case. The derivative is a linear transformation as before, and all goes through except the discussion of the Curl, which is unique to the three-dimensional case. With this generalization all cases are subsumed, again except for the Curl, by this general case.

Consider now the chain rule in the general case. Let  and  represent natural numbers. Situation:  is differentiable at , and  is differentiable at , then  is differentiable at  and



where  represents function composition. Observe that in Eqn. (35)  is a linear map and  is a linear map; hence the composition of the two maps is a linear map, and all is well. Use brackets to denote matrix representation, and the matrix version of Eqn. (35) becomes





Recall the one-variable chain rule.





where the juxtaposition on the right-hand side of Eqn. (37) denotes multiplication, but could just as well have been written




because, in the one-dimensional case, composition of linear functions is multiplication. Compare Eqn. (35) and Eqn. (37’) and you see that Eqn. (37’) is just a special case of  Eqn. (35).


Appendix

This appendix contains results from Linear Algebra that I need to show how Divergence and Curl are related to the derivative as defined and discussed in this note. The assertions appear without proofs; proofs appear in the references.

Consider vector space  over the field of real numbers endowed with the usual basis and the corresponding scalar product, the dot product.

A1.	If  is linear, then there exists unique vector  such that

  .

A2.  Given that  is linear, pick and fix  . Construct linear map  by

 .

	By A1 above, there exists unique vector  such that

 .

	Rename vector  where  . Then

 .

	Fact: , called the adjoint of , is linear.

	Fact: Relative to an orthonormal basis, the matrix of  is the transpose of the  
                 matrix of 

A3.	Definition:  is said to be symmetric (or self-adjoint) if .  is skew-symmetric if  .

A4.	For any linear ,

         is symmetric.
         is skew-symmetric.

	 and  are called the symmetric and skew-symmetric parts of  because  .

A5.	If  is skew-symmetric, then there exists unique vector  such that

	 for all 
	Relative to the standard basis , the matrix of a skew symmetric map looks like the following matrix.



	and the  of the theorem is

 .

A6. If  is symmetric, then there exists an orthonormal basis, , and                    real numbers (not necessarily distinct)  such that  for .

A7. Situation:  is linear.  is the identity map. For each  define linear map  by . Then det , the determinant of  , is a polynomial of degree 3 in .

	Let  denote the roots of det . Then 

 .

det is the characteristic polynomial of .

det  is an invariant of  (independent of the matrix representation of ).

The , and since det , we can write the characteristic polynomial of  as 

 


 Annotated Bibliography

1. H. K. Nickerson, D. C. Spencer, and N. E. Steenrod, Advanced Calculus, Dover Publications, 2011. Unabridged republication of the work originally published in 1959 by the D. Van Nostrand Company.

Most of what appears in this presentation comes from this book. To give you some idea of the nature of its content, I offer the following three items: (1) a note that appears on the outside of its back cover, (2) an excerpt from the authors’ preface, and (3) a partial list of chapter titles.

First, the note on the cover:

“This book is a radical departure from all previous concepts of advanced calculus,” declared the Bulletin of the American Mathematics Society, “and the nature of this departure merits serious study of the book by everyone interested in undergraduate education in mathematics.” Classroom-tested in a Princeton University honors course, it offers students a unified introduction to advanced calculus.

Next, the preface material:

	These notes were prepared for the honors course in Advanced Calculus, Mathematics 303-304, Princeton University.

	The standard treatises on this subject, at any rate those available in English, tend to be omnibus collections of seemingly unrelated topics. The presentation of vector analysis often degenerates into a list of formulas and manipulative exercises, and the student is not brought to grips with the underlying mathematical ideas.
     
	In these notes a unity is achieved by beginning with an abstract treatment of vector spaces and linear transformations. This enables us to introduce a single basic derivative (the Frechet derivative) in an invariant form. All other derivatives (gradient, divergence, curl and exterior derivative) are obtained from it by specialization. The corresponding theory of integration is likewise unified, and the various multiple integral theorems of advanced calculus appear as special cases of a general Stokes’ formula concerning the integration of exterior forms. In a final chapter these concepts are applied to analytic functions of complex variables.
	
Finally, the partial list of chapter titles:

	I. The Algebra of Vector Spaces
	II. Linear Transformations of Vector Spaces.
	III. The Scalar Product
	IV. Vector Products in 
	V. Endomorphisms
	VI. Vector-valued Functions of a Scalar
	VII. Scalar-valued Functions of a Vector
	VIII. Vector-valued Functions of a Vector

So, this reference is not your usual advanced calculus book. It was published in an 8” by 11” typescript form and that first edition was the last. The Dover edition is a photo-reduced form of the original publication.

Clearly, this book has had little influence on modern-day teaching of calculus and advanced calculus. They are taught today much as they were in 1959 when the authors wrote this book; perhaps that persistence is appropriate for all but a few exceptional students. We emphasize mechanical how-to-do-it methods rather than “underlying mathematical ideas.” Since most of our students will be consumers of and users of mathematics rather than producers of and teachers of mathematics, the present emphasis on manipulative skills is probably appropriate.

However, if you are interested in the deeper aspects of the subject, I recommend Nickerson, Spencer, and Steenrod. It is thorough, carefully written, includes proofs (some off the beaten path) of almost all content, and will reward effort, especially if precision and clarity interest you. It may be “advanced calculus on steroids,” but it is well worth the moderate price.

2. Spivak, Michael, Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced Calculus,” W. A. Benjamin, Inc., New York, Amsterdam, 1965.

Excerpt from the preface:

	This little book is especially concerned with those portions of “advanced calculus” in which the subtlety of the concepts and methods makes rigor difficult to attain at an elementary level. The approach taken here uses elementary versions of modern methods found in sophisticated mathematics. The formal prerequisites include only a term of linear algebra, a nodding acquaintance with the notation of set theory, and a respectable first-year calculus course (one which at least mentions the upper bound (sup) and the greatest lower bound (inf) of a set of real numbers). Beyond this a certain (perhaps latent) rapport with abstract mathematics will be found almost essential.

This book too treats foundational material carefully and rigorously.	Its scope is narrower and deeper than that of Nickerson, Spencer, and Steenrod. I include it here because it contains a nice proof of the chain rule for functions from vector spaces to vector spaces.

3. H. M. Schey, Div, Grad, Curl, and All That: An Informal Text on Vector Calculus, W.W. Norton & Company, Inc., New York, 1973.

As a counterpoint to the two previous references, I call attention to this delightful paperback book. It was designed for undergraduate physics students at M.I.T. It emphasizes the physical significance of the vector concepts of Div, Grad, and Curl and makes no claim to mathematical rigor. Here is an excerpt from the preface:

I undertook to write this short text on vector analysis as a result of my experience several years ago in teaching electricity and magnetism to M.I.T. undergraduates. The course began with elementary concepts and culminated in a brief discussion of Maxwell’s equations. It follows that en route we encountered a fair amount of vector calculus, and I was chagrined to find my students unequal to the challenge. (That puts it rather mildly; they took to hissing every time I said divergence, gradient, or curl.) I tried to provide some of the mathematics in lecture, but couldn’t do as much of this as necessary since my job was to teach physics, not mathematics. I sorely needed a short (and preferably inexpensive) auxiliary text that my students could use to learn the vector calculus they needed in their study of electromagnetic theory, and it was to fill such a need that I wrote this book. However, I think it can also be used by students who, without any applications to physics in mind, would like to learn vector calculus just for its own sweet self.

Needless to say, what I have written is certainly not a mathematician’s account of vector calculus, for I have paid scant attention to mathematical rigor. This treatment is very “relaxed,” and physical and geometrical arguments are used throughout wherever I felt they helped to make a point.

This book contains a nice demonstration of the connection between the curl and the angular velocity of a swirling liquid. Schey uses as model the image of a liquid rotating in the (x,y) plane as in water draining from a bathtub. If  is the velocity of the liquid as a function of the distance from the origin, and  is the angular velocity of the liquid as a function of that same distance, then Schey shows that 

                                                                                        (B1)




Recall, from Eqn. (24), that 

                                                                      (B2)   

Perhaps Eqn. (B1) helps explain the “2” in Eqn. (B2)
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